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Introduction
Goal: Exhaustively generate all objects of a combinato-
rial class efficiently, where consecutive objects differ only
a ‘little bit’ (=Gray code), see [1,2].
This work: A versatile algorithmic framework for gen-
erating many different combinatorial objects, such as
permutations, binary trees, triangulations, Dyck paths,
set partitions, binary strings, rectangulations etc.
Idea: Encode the objects as a subset Ln ⊆ Sn, where Sn

is the set of all permutations of [n] := {1, . . . , n}, and use
a greedy algorithm to generate the permutations from Ln

by cyclic substring rotations.

Jump
A jump moves an entry in the permutation across some
neighboring smaller entries left or right (=cyclic sub-
string rotation by one position):

57 4 1 3 2 6 57 4 1 3 2 6

An invalid jump (across bigger entries):

57 4 1 3 2 6

Algorithm J (greedy jumps)
Greedily generate a set of permutations Ln ⊆ Sn by
minimal jumps, where a jump is minimal if any shorter
jump of the same value yields a permutation not in Ln.
J1. Visit the initial permutation π0 ∈ Ln

J2. Generate an unvisited permutation from Ln by per-
forming a minimal jump of the largest possi-
ble value in the most recently visited permutation.
Visit this permutation and repeat J2.

Zigzag languages
For π ∈ Sn, we let π− denote the permutation in Sn−1

obtained from π by removing the largest symbol n.
Moreover, for π ∈ Sn−1, we let nπ and πn denote the
permutations in Sn obtained by inserting n at the left-
most or rightmost position of π, respectively.
Zigzag language: A set of permutations Ln ⊆ Sn sat-
isfying (i) n = 0 and L0 = {ε}, or (ii) n ≥ 1 and
Ln−1 := {π− | π ∈ Ln} is a zigzag language, and for
every π ∈ Ln−1, we have that nπ and πn are both in Ln.
Theorem: Algorithm J generates any zigzag language,
using the identity permutation for initialization.
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Figure 1: A zigzag language Ln can be interpreted as the
set of nodes that remain in distance n from the root in the
tree of permutations after pruning nodes that are not of the
form kπ or πk for any π ∈ Sk−1 (filled nodes in the figure;
pruned nodes are grayed out).

Pattern-avoiding permutations
Preliminaries: A permutation π contains a pattern τ ,
if π contains a substring of entries in the same relative
order as τ . Otherwise, π avoids τ . E.g., 635412
contains 231, but 654123 avoids it. If τ has one
underlined pair of entries, we call it a vincular pattern,
and a permutation π containing τ must have the two
underlined entries appear consecutively in π. E.g.,
3142 contains 231, but avoids 231.
Sn(τ) is the set of all permutations of [n] that
avoid τ . Furthermore, Sn(τ ∧ ρ) := Sn(τ) ∩ Sn(ρ) and
Sn(τ ∨ ρ) := Sn(τ) ∪ Sn(ρ). A pattern τ is tame, if
Sn(τ) is a zigzag language for all n ≥ 1.
Lemma: If τ does not have the largest symbol at the
leftmost or rightmost position, then τ is tame. If τ is
a vincular pattern, then in addition the largest symbol
must be part of the vincular pair for τ to be tame.
Theorem: Let F be a propositional formula made of
logical ANDs ∧, ORs ∨, and tame patterns as vari-
ables, then Sn(F ) is a zigzag language of permutations
for all n ≥ 1. Hence, it can be generated by Algorithm J.
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Figure 2: 231-avoiding permutations of length n = 4 gener-
ated by Algorithm J and resulting Gray codes for binary trees,
triangulations and Dyck paths (only first 7 objects shown).
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Figure 3: Twisted Baxter permutations (2413 ∧ 3412-
avoiding) of length n = 4 generated by Algorithm J and
resulting Gray code for diagonal rectangulations.

Tame permutation patterns
Patterns Combinatorial objects and ordering
none permutations by adjacent transpositions → plain change order
231 = 231 Catalan families: binary trees by rotations, triangulations by edge flips,

Dyck paths by hill flips → Lucas-van Baronaigien-Ruskey’s Gray code order
231 set partitions by exchanges → Kaye’s Gray code order
132 ∧ 231 = 132 ∧ 231 binary strings by bitflips → reflected Gray code order (BRGC)
2143: vexillary permutations
2143 ∧ 3412: skew-merged permutations
2143 ∧ 2413 ∧ 3142 ∧ 3412: X-shaped permutations
2413 ∧ 3142: separable permutations slicing floorplans (=guillotine partitions) by flips
2413 ∧ 3142: Baxter permutations mosaic floorplans (=diagonal rectangulations=R-equivalent rectangulations)
2413 ∧ 3412: twisted Baxter permutations by flips
2143 ∧ 3412 S-equivalent rectangulations by flips
2143 ∧ 3412 ∧ 2413 ∧ 3142 S-equivalent guillotine rectangulations by flips
35124∧35142∧24513∧42513: generic rectangulations (=rectangular drawings) by flips and wall slides
2-clumped permutations

Lattice congruences
Preliminaries: The inversion set of a permutation π is
the set all pairs

(
π(i), π(j)

)
for i < j with π(i) > π(j).

The weak order on Sn is the lattice obtained by ordering
all permutations by containment of their inversion sets.
The cover relations are adjacent transpositions.
A lattice congruence is an equivalent relation on the weak
order that is compatible with taking joins and meets.
The corresponding lattice quotient is obtained by con-
tracting the equivalence classes and by inheriting all com-
parabilities (see [4]).
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Figure 4: The weak order on S4 (left) with a lattice congru-
ence (bold edges) and the resulting lattice quotient (=Tamari
lattice) with corresponding binary trees (right).

Theorem: For any lattice congruence of the weak order
on Sn, there is a set of representative permutations, ex-
actly one for each equivalence class, that forms a zigzag
language. The resulting jump order forms a Hamilton
path in the cover graph of the lattice quotient.

Pilaud and Santos [3] realized each cover graph of a lat-
tice quotient as the skeleton of a polytope, and they
called these polytopes quotientopes.
Corollary: Every quotientope has a Hamilton path.

Figure 5: All quotientopes for n = 4, with a Hamilton path
generated by Algorithm J (end vertices marked). Permuta-
hedron, associahedron and hypercube are highlighted.
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